HOPS STUDIES
There are over 80 studies on hops and health. Below is a quick synopsis of the study highlights that you can look up online. The more comprehensive studies are called “Reviews” because they take a look at a number of studies and capsulize the ideas.
The great news is that hops is now bioavailable under a proprietary and patented process offered only in Hops 4 Health.
*Not all of the studies below directly relate to HOPS 4 resins but do show how comprehensively this one product has been studied. These statements and studies have not been evaluated by the Food and Drug Administration. HOPS 4 Health is not intended to diagnose, treat, cure or prevent any disease. Studies mentioned are for your research and reference not to state that HOPS 4 Health will accomplish similar results.
Brain and Memory Studies
Tatsuhiro Ayabe, et al, A Review Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation Biomolecules Published: 13 January 2020 Click here to view!
They determined that Hops bitters: (like Hops 4 Health)
- Enhanced hippocampus-dependent memory and prefrontal cortex-associated cognitive function
- Enhance memory functions
- Enhance cognitive function via Vagus nerve stimulation.
- It is safe
- Hops can stop neuroinflammation and cognitive impairments
- Prevent obesity induced cognitive decline
These effects can be stopped by interrupting the Vagus nerve signals, which indicates that the Vagus nerve is critical for making the effects happen. It is a gut to brain connection not dependent on the blood brain barrier.
Lowering Blood Sugar and A1c Levels Produces Weight Loss
Methods – Ninety-four subjects with prediabetes were randomly divided into four groups. A 12-week double-blind dose-finding study was performed in which subjects ingested placebo capsules or test capsules containing 16 mg, 32 mg or 48 mg of isohumulones per day.
Result – After treatment, fasting blood glucose was decreased ……in the (HOPS group) after 4 weeks, but did not change in the placebo group. HbA1c was also significantly decreased after 4 weeks in the … (Hops group) Body mass index (BMI) was significantly decreased in the 48 mg group as compared with the placebo group at 12 weeks. The decrease in total fat area was also significantly greater in the 48 mg group than in the placebo group at 12 weeks.
Cutting Inflammation and Joint Pain
- Modulates hyaluronan activity in the joints (joint cushion)
- Reduces collagen degradation
- Inhibits proteoglycan loss
- Anti-inflammatory (reduces inflammation)
- Natural pain reliever
- Numerous other health benefits
In this study, we demonstrate and compare the anti-inflammatory effect of various classes of hop bitter acids (HBA), including α-acids (AA), β-acids (BA), and iso-α-acids (IAA), in fibroblasts, which are important players in the inflammatory response. All three studied classes of HBA blocked the tumor necrosis factor alpha (TNF)-induced production of the cytokine IL6, and inhibited the transactivation of the pro-inflammatory transcription factors nuclear factor kappa B (NF-κB)
Reduces Stubborn Belly Fat, Produces weight Loss
Methods
Two hundred subjects (male and female aged 20 to below 65 years with a BMI of 25 or more and less than 30 kg/m2) were randomly assigned to two groups. …..The primary endpoint was reduction of the abdominal fat area as determined by CT scanning after continual ingestion of MHE for 12 weeks.
Results
Compared to the placebo group, a significant reduction was observed in the visceral fat area after 8 and 12 weeks, and in the total fat area after 12 weeks in the active group. …
Conclusions
The present study suggests that continual ingestion of MHE safely reduces body fat, particularly the abdominal visceral fat of healthy overweight subjects.
Medical Nutrition focusing on Hops Study
Another major review looked at a number of other issues that are helped by hops its main author is Dr Jeffery Bland.
“Jeffrey Bland Internationally recognized as the father of Functional Medicine, an expert on nutrition and biochemistry, and a healthcare thought leader. Dr. Bland is known as the “father of functional medicine,” and over the past thirty-five years has taught more than 100,000 health-care practitioners around the globe. ” – Dr. Oz
It is suggested from this extensive body of work that specific isohumulones may be important bioactive agents for the application in medical nutrition therapy in the support of diseases associated with chronic inflammation and insulin resistance.”
Below is his (and colleagues) review study on Hops
Bland, Jeffery et all, Isohumulones from hops (humulus lupulus) and their potential role in medical nutrition therapy. Pharma Nutrition 3 (2015) 46-52 Click here to view!
They determined that Hops bitters had a lot of potentially positive medical effects. From the studies they found that hops:
- Cuts inflammation
- Reduces insulin resistance
- Reduced elevated triglycerides
- Raised good cholesterol
- Reduced liver fat stores
- Reduced arthritic pain
- Is an approved food additive
- Increases nitric oxide production (think Viagra)
- Cuts pain like asprin or ibuprofen but without gut issues
- May prevent cardio-vascular issues by cutting inflammation
- Reduces swelling
- Reduced kidney injury and reduced blood pressure
- Improves insulin signaling
- Inhibits obesity
- Increases fat burning
- Improves insulin action
- Cuts leaky gut
- Improves weight loss
(many of these are in animal model studies)
Want more studies?
References from the above study: A Review Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation
- Livingston, G.;Sommerlad, A.; Orgeta, V.;Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [CrossRef]
- Neafsey, E.J.; Collins, M.A. Moderate alcohol consumption and cognitive risk.Neuropsychiatr. Dis. Treat.2011, 7, 465–484. [CrossRef] [PubMed]
- Xu, W.; Wang, H.; Wan, Y.; Tan, C.; Li, J.; Tan, L.; Yu, J.T. Alcohol consumption and dementia risk: A dose-response meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 31–42. [CrossRef] [PubMed]
- Bastianetto, S.; Menard, C.; Quirion, R. Neuroprotective action of resveratrol.Biochim. Biophys. Acta 2015, 1852, 1195–1201. [CrossRef] [PubMed]
- Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015, 85, 1383–1391. [CrossRef]
- Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease.Ann. N. Y. Acad. Sci.2017, 1403, 142–149. [CrossRef]
- Biendl, M.;Pinzl, C. Hops and health.MBAA TQ 2009, 46, 1–7. [CrossRef] CrossRef] Biomolecules 2020, 10, 131 11 of 15
- Milligan, S.R.; Kalita, J.C.;Heyerick, A.; Rong, H.; De Cooman, L.; DeKeukeleire, D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J. Clin. Endocrinol. Metab. 1999, 84, 2249–2252.
- Stulikova, K.; Karabin, M.; Nespor, J.; Dostalek, P. Therapeutic Perspectives of 8-Prenylnaringenin, a Potent Phytoestrogen from Hops. Molecules 2018, 23, 660. [CrossRef]
- Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015, 20, 754–779. [CrossRef]
- Intelmann, D.;Batram, C.; Kuhn, C.; Haseleu, G.; Meyerhof, W.; Hofmann, T. Three TAS2R Bitter Taste Receptors Mediate the Psychophysical Responses to Bitter Compounds of Hops (Humulus lupulus L.) and Beer. Chemosens. Percept. 2009, 2, 118–132. [CrossRef]
- Kowaka, M.; Kokubo, E. Composition of bitter substances of hops and characteristics of beer bitterness. Am. Soc. Brew. Chem.1977,35, 16–21. [CrossRef]
- Kunimune, T.; Shellhammer, T.H. Foam-stabilizing effects and cling formation patterns of iso-alpha-acids and reduced iso-alpha-acids in lager beer. J. Agric. Food Chem. 2008, 56, 8629–8634. [CrossRef]
- Simpson,W.J.; Smith, A.R. Factors affecting antibacterial activity of hop compounds and their derivatives. Appl.Bacteriol.1992, 72, 327–334. [CrossRef]
- Schurr, B.C.; Hahne, H.; Kuster, B.; Behr, J.; Vogel, R.F. Molecular mechanisms behind the antimicrobial activity of hop iso-alpha-acids in Lactobacillus brevis. Food Microbiol. 2015, 46, 553–563. [CrossRef]
- Taniguchi, Y.;Matsukura, Y.; Taniguchi, H.; Koizumi, H.; Katayama, M. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components. Biosci. Biotechnol. Biochem. 2015, 79, 1684–1694. [CrossRef]
- Biessels, G.J.;Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [CrossRef]
- Gudala, K.; Bansal, D.; Schifano, F.; Bhansali, A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. J. Diabetes Investig. 2013, 4, 640–650. [CrossRef]
- Xu,W.; Atti, A.; Gatz, M.; Pedersen, N.; Johansson, B.;Fratiglioni, L. Midlife overweight and obesity increase late-life dementia risk: A population-based twin study. Neurology 2011, 76, 1568–1574. [CrossRef]
- Waldstein, S.; Katzel, L. Interactive relations of central versus total obesity and blood pressure to cognitive function. Int. J. Obes. 2006, 30, 201. [CrossRef]
- Raji, C.A.; Ho, A.J.;Parikshak, N.N.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Leow, A.D.; Toga, A.W.; Thompson, P.M. Brain structure and obesity. Hum. Brain Mapp. 2010, 31, 353–364. [CrossRef]
- Spencer, S.J.; D’Angelo, H.; Soch, A.; Watkins, L.R.; Maier, S.F.; Barrientos, R.M. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal-and amygdalar-dependent memory. Neurobiol. Aging 2017, 58, 88–101. [CrossRef]
- Yajima, H.;Ikeshima, E.; Shiraki, M.; Kanaya, T.; Fujiwara, D.; Odai, H.;Tsuboyama-Kasaoka, N.; Ezaki, O.; Oikawa, S.; Kondo, K. Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J. Biol. Chem. 2004, 279, 33456–33462. [CrossRef]
- Gross, B.; Pawlak, M.; Lefebvre, P.;Staels, B. PPARs in obesity-induced T2DM,dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 2017, 13, 36–49. [CrossRef]
- Lehmann, J.M.; Lenhard, J.M.; Oliver, B.B.; Ringold, G.M.; Kliewer, S.A. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs.
- Biol. Chem.1997,272, 3406–3410. [CrossRef]
- Lehmann, J.M.; Moore, L.B.; Smith-Oliver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer, S.A. An antidiabetic thiazolidinedione is a high a_nity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 1995, 270, 12953–12956. [CrossRef]
- Yajima, H.; Noguchi, T.;Ikeshima, E.; Shiraki, M.; Kanaya, T.;Tsuboyama-Kasaoka, N.; Ezaki, O.; Oikawa, S.; Kondo, K. Prevention of diet-induced obesity by dietary isomerized hop extract containing isohumulones, in rodents. Int. J. Obes. 2005, 29, 991–997. [CrossRef]
- Miura, Y.; Hosono, M.; Oyamada, C.; Odai, H.; Oikawa, S.; Kondo, K. Dietaryisohumulones, the bitter components of beer, raise plasma HDL-cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARalpha activations in C57BL/6 mice. Br. J. Nutr. 2005, 93, 559–567. [CrossRef] Biomolecules 2020, 10, 131 12 of 15
- Obara, K.; Mizutani, M.; Hitomi, Y.; Yajima, H.; Kondo, K.Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin. Nutr. 2009, 28, 278–284. [CrossRef]
- Ayabe, T.;Ohya, R.; Kondo, K.; Ano, Y. Iso-alpha-acids, bitter components of beer, prevent obesity-induced cognitive decline. Sci. Rep. 2018, 8, 4760.[CrossRef]
- Ano, Y.; Hoshi, A.;Ayabe, T.;Ohya, R.; Uchida, S.; Yamada, K.; Kondo, K.; Kitaoka, S.; Furuyashiki, T. Iso-alpha-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation. FASEB J. 2019, 33, 4987–4995. [CrossRef] [PubMed]
- Yamada, K.; Uchida, S.; Takahashi, S.; Takayama, M.; Nagata, Y.; Suzuki, N.;Shirakura, S.; Kanda, T.E_ect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer’s disease. Brain Res. 2010, 1352, 176–186. [CrossRef] [PubMed]
- Arunrungvichian, K.;Boonyarat, C.; Fokin, V.V.; Taylor, P.; Vajragupta, O. Cognitive improvements in a mouse model with substituted 1,2,3-triazole agonists for nicotinic acetylcholine receptors. ACS Chem. Neurosci. 2015, 6, 1331–1340. [CrossRef]
- Bristow, L.J.; Easton, A.E.; Li, Y.W.;Sivarao, D.V.; Lidge, R.; Jones, K.M.; Post-Munson, D.; Daly, C.; Lodge, N.J.; Gallagher, L.; et al. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia. PLoS ONE 2016, 11, e0159996. [CrossRef]
- Cohen, S.J.; Stackman, R.W., Jr. Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav. Brain Res. 2015, 285, 105–117. [CrossRef]
- Ayabe, T.;Ohya, R.; Ano, Y. Hop-Derived Iso-alpha-Acids in Beer Improve Visual Discrimination and Reversal Learning in Mice as Assessed by a Touch Panel Operant System. Front. Behav. Neurosci. 2019, 13, 67. [CrossRef]
- Nithianantharajah, J.;McKechanie, A.G.; Stewart, T.J.; Johnstone, M.; Blackwood, D.H.; St Clair, D.; Grant, S.G.; Bussey, T.J.; Saksida, L.M. Bridging the translational divide: Identical cognitive touchscreen testing in mice and humans carrying mutations in a disease-relevant homologous gene. Sci. Rep. 2015, 5, 14613. [CrossRef]
- Gilbert, C.D.; Sigman, M.; Crist, R.E. The neural basis of perceptual learning.Neuron2001, 31, 681–697. [CrossRef]
- Bussey, T.J.; Saksida, L.M. Memory, perception, and the ventral visual-perirhinal-hippocampal stream: Thinking outside of the boxes. Hippocampus 2007, 17, 898–908. [CrossRef]
- Kehagia, A.A.; Murray, G.K.; Robbins, T.W. Learning and cognitive flexibility:Frontostriatal function and monoaminergic modulation. Curr. Opin. Neurobiol. 2010, 20, 199–204. [CrossRef]
- Klanker, M.; Feenstra, M.; Denys, D. Dopaminergic control of cognitive flexibility in humans and animals. Front. Neurosci. 2013, 7, 201. [CrossRef] [PubMed]
- Kita, M.; Yoshida, S.; Kondo, K.; Yamakawa, Y.; Ano, Y.E_ectsof iso-alpha-acids, the hop-derived bitter components in beer, on the MRI-based Brain Healthcare Quotient in healthy middle-aged to older adults. Neuropsychopharmacol. Rep. 2019, 39, 273–278. [CrossRef] [PubMed]
- Nemoto, K.; Oka, H.; Fukuda, H.; Yamakawa, Y. MRI-based Brain Healthcare Quotients: A bridge between neural and behavioral analyses for keeping the brain healthy. PLoS ONE 2017, 12, e0187137. [CrossRef] [PubMed]
- Huang, Y.Y.; Kandel, E.R. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. USA 1995, 92, 2446–2450. [CrossRef]
- Xing, B.; Kong, H.; Meng,X.;Wei, S.G.; Xu, M.; Li, S.B. Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 2010, 169, 1511–1519. [CrossRef]
- da Silva, W.C.; Kohler, C.C.;Radiske, A.; Cammarota, M. D1/D5 dopamine receptors modulate spatial memory formation. Neurobiol. Learn. Mem. 2012, 97, 271–275. [CrossRef]
- Shinohara, R.; Taniguchi, M.; Ehrlich, A.T.; Yokogawa, K.; Deguchi, Y.;Cherasse, Y.; Lazarus, M.; Urade, Y.; Ogawa, A.; Kitaoka, S.; et al. Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol. Psychiatry 2018, 23, 1717–1730. [CrossRef]
- Egan, J.M.;Margolskee, R.F. Taste cells of the gut and gastrointestinalchemosensation. Mol. Interv. 2008, 8, 78–81. [CrossRef] Biomolecules 2020, 10, 131 13 of 15
- Wu, S.V.;Rozengurt, N.; Yang, M.; Young, S.H.; Sinnett-Smith, J.;Rozengurt, E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc. Natl. Acad. Sci. USA 2002, 99, 2392–2397. [CrossRef]
- Chen, M.C.; Wu, S.V.; Reeve, J.R., Jr.;Rozengurt, E. Bitter stimuli induce Ca2+signaling and CCK release in enteroendocrine STC-1 cells: Role of L-type voltage-sensitive Ca2+ channels. Am. J. Physiol. Cell Physiol. 2006, 291, C726–C739. [CrossRef]
- Kempadoo, K.A.;Mosharov, E.V.; Choi, S.J.; Sulzer, D.; Kandel, E.R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl. Acad. Sci. USA 2016, 113, 14835–14840. [CrossRef] [PubMed]
- Takeuchi, T.;Duszkiewicz, A.J.; Sonneborn, A.; Spooner, P.A.; Yamasaki, M.; Watanabe, M.; Smith, C.C.; Fernandez, G.; Deisseroth, K.; Greene, R.W.; et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 2016, 537, 357–362. [CrossRef] [PubMed]
- Taniguchi, Y.;Matsukura, Y.; Ozaki, H.; Nishimura, K.; Shindo, K. Identification and quantification of the oxidation products derived from alpha-acids and beta-acids during storage of hops (Humulus lupulus L.).
- Agric. Food Chem.2013,61, 3121–3130. [CrossRef] [PubMed]
- Morimoto-Kobayashi, Y.; Ohara, K.; Takahashi, C.; Kitao,S.;Wang, G.; Taniguchi, Y.; Katayama, M.; Nagai, K. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity. PLoS ONE 2015, 10, e0131042. [CrossRef] [PubMed]
- Yamazaki, T.; Morimoto-Kobayashi, Y.; Koizumi, K.; Takahashi, C.; Nakajima, S.; Kitao, S.; Taniguchi, Y.; Katayama, M.; Ogawa, Y. Secretion of a gastrointestinal hormone, cholecystokinin, by hop-derived bitter components activates sympathetic nerves in brown adipose tissue. J. Nutr. Biochem. 2019, 64, 80–87. [CrossRef]
- Morimoto-Kobayashi, Y.; Ohara, K.;Ashigai,H.; Kanaya, T.; Koizumi, K.; Manabe, F.; Kaneko, Y.; Taniguchi, Y.; Katayama, M.; Kowatari, Y.; et al. Matured hop extract reduces body fat in healthy overweight humans: A randomized, double-blind, placebo-controlled parallel group study. Nutr. J. 2016, 15, 25. [CrossRef]
- Suzuki, S.; Yamazaki, T.; Takahashi, C.; Kaneko, Y.; Morimoto-Kobayashi, Y.; Katayama, M. The relationship between the e_ect of matured hop extract and physical activity on reducing body fat: Re-analysis of data from a randomized, double-blind, placebo-controlled parallel group study. Nutr. J. 2018, 17, 98. [CrossRef]
- Ayabe, T.;Ohya, R.; Ano, Y. Iso-alpha-acids and matured hop bitter acids in beer improve obesity-induced cognitive impairment. Biosci. Biotechnol. Biochem. 2019, 83, 1937–1945. [CrossRef]
- Ayabe, T.;Ohya, R.; Taniguchi, Y.; Shindo, K.; Kondo, K.; Ano, Y. Matured Hop-Derived Bitter Components in Beer Improve Hippocampus-Dependent Memory Through Activation of the Vagus Nerve. Sci. Rep. 2018, 8, 15372. [CrossRef]
- Mello-Carpes, P.B.; da Silva de Vargas, L.; Gayer, M.C.; Roehrs, R.; Izquierdo, I. Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence. Neurobiol. Learn. Mem. 2016, 127, 84–92. [CrossRef]
- Mello-Carpes, P.B.; Izquierdo, I. The Nucleus of the SolitaryTract!NucleusParagigantocellularis!Locus Coeruleus!CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol. Learn. Mem. 2013, 100, 56–63. [CrossRef] [PubMed]
- Groves, D.A.; Brown, V.J. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical e_ects. Neurosci. Biobehav. Rev. 2005, 29, 493–500. [CrossRef] [PubMed]
- Hays, S.A.; Rennaker, R.L.;Kilgard, M.P. Targeting plasticity withvagus nerve stimulation to treat neurological disease. Prog. Brain Res. 2013, 207, 275–299. [PubMed]
- Haam, J.; Yakel, J.L. Cholinergic modulation of the hippocampal region and memory function.J. Neurochem. 2017, 142, 111–121. [CrossRef] [PubMed]
- Fukuda, T.;Ayabe, T.;Ohya, R.; Ano, Y. Matured hop bitter acids improve spatial working and object recognitionmemory via nicotinic acetylcholine receptors. Psychopharmacology 2019, 236, 2847–2854. [CrossRef] [PubMed]
- Fukuda, T.; Obara, K.; Saito, J.; Umeda, S.; Ano, Y.E_ectsof hop bitter acids, bitter components in beer, on cognition in healthy adults: A randomized controlled trial. J. Agric. Food Chem. 2020, 68, 206–212. [CrossRef]
- Alvarez, J.A.; Emory, E. Executive function and the frontal lobes: A meta-analytic review.Neuropsychol. Rev. 2006, 16, 17–42. [CrossRef] Biomolecules 2020, 10, 131 14 of 15
- MacLeod, C.M.; MacDonald, P.A. Interdimensional interference in the Stroope_ect: Uncovering the cognitive and neural anatomy of attention. Trends Cog. Sci. 2000, 4, 383–391. [CrossRef]
- Fukuda, T.;Ohya, R.; Kobayashi, K.; Ano, Y. Matured Hop Bitter Acids in Beer Improve Lipopolysaccharide-Induced Depression-Like Behavior. Front. Neurosci. 2019, 13, 41. [CrossRef]
- Almaguer, C.;Gastl, M.; Arendt, E.K.; Becker, T. Comparative study of the contribution of hop (Humulus lupulus L.) hard resins extracted from di_erent hop varieties to beer quality parameters. J. Am. Soci. Brew. Chem. 2015, 73, 115–123. [CrossRef]
- Steenbergen, L.; Sellaro, R.; Stock, A.K.;Verkuil, B.; Beste, C.;Colzato, L.S. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 2015, 25, 773–778. [CrossRef] [PubMed]
- Chunchai, T.;Samniang, B.; Sripetchwandee, J.; Pintana, H.; Pongkan,W.; Kumfu, S.; Shinlapawittayatorn, K.; KenKnight, B.H.; Chattipakorn, N.; Chattipakorn, S.C. Vagus Nerve Stimulation Exerts the Neuroprotective E_ects in Obese-Insulin Resistant Rats, Leading to the Improvement of Cognitive Function. Sci. Rep. 2016, 6, 26866. [CrossRef] [PubMed]
- Liu, A.F.; Zhao,F.B.;Wang, J.; Lu, Y.F.; Tian, J.; Zhao, Y.; Gao, Y.; Hu, X.J.; Liu, X.Y.; Tan, J.; et al.E_ects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion. J. Transl. Med. 2016, 14, 101. [CrossRef] [PubMed]
- Suzuki, S.; Morimoto-Kobayashi, Y.; Takahashi, C.; Taniguchi, Y.; Katayama, M. Genetic, acute andsubchronic toxicity studies of matured hop extract produced by extraction from heat-treated hops. J. Toxicol. Sci. 2018, 43, 473–484. [CrossRef]
- Glenner,G.G.;Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 2012, 425, 534–539. [CrossRef]
- Querfurth, H.W.;LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med. 2010, 362, 329–344. [CrossRef]
- Amor, S.; Puentes, F.; Baker, D.; van der Valk, P. Inflammation in neurodegenerative diseases.Immunology2010, 129, 154–169. [CrossRef]
- Heneka, M.T. Inflammasome activation and innate immunity in Alzheimer’s disease.Brain Pathol. 2017, 27, 220–222. [CrossRef]
- Yan, Y.;Jiang,W.; Liu,L.;Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 2015, 160, 62–73. [CrossRef]
- Agarwal, S.; Yadav, A.; Chaturvedi, R.K. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem. Biophys. Res. Commun. 2017, 483, 1166–1177. [CrossRef]
- Ano, Y.; Dohata, A.; Taniguchi, Y.; Hoshi, A.; Uchida, K.; Takashima, A.; Nakayama, H. Iso-alpha-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer’s Disease. J. Biol. Chem. 2017, 292, 3720–3728. [CrossRef]
- Ano, Y.;Takaichi, Y.; Uchida, K.; Kondo, K.; Nakayama, H.; Takashima, A. Iso-alpha-Acids, the Bitter Components of Beer, Suppress Microglial Inflammation in rTg4510 Tauopathy. Molecules 2018, 23, 3133. [CrossRef] [PubMed]
- Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.;Albasset, S.; McManus, R.M.; Tejera, D.; et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019, 575, 669–673. [CrossRef] [PubMed]
- Bakker, A.; Krauss, G.L.; Albert, M.S.; Speck, C.L.; Jones, L.R.; Stark, C.E.; Yassa, M.A.; Bassett, S.S.; Shelton, A.L.; Gallagher, M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012, 74, 467–474. [CrossRef] [PubMed]
- Ano, Y.; Yoshikawa, M.;Takaichi, Y.;Michikawa, M.; Uchida, K.; Nakayama, H.; Takashima, A. Iso-alpha-Acids, Bitter Components in Beer, Suppress Inflammatory Responses and Attenuate Neural Hyperactivation in the Hippocampus. Front. Pharm. 2019, 10, 81. [CrossRef] [PubMed]
- Wang, T.;Nowrangi, D.; Yu, L.; Lu, T.; Tang, J.; Han, B.; Ding, Y.; Fu, F.; Zhang, J.H. Activation of dopamine D1receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J. Neuroinflammation 2018, 15, 2. [CrossRef]
- Ano, Y.;Ohya, R.; Kondo, K.; Nakayama, H. Iso-alpha-acids, Hop-Derived Bitter Components of Beer, Attenuate Age-Related Inflammation and Cognitive Decline. Front. Aging Neurosci. 2019, 11, 16. [CrossRef]
- Bondare_,W.; Mountjoy, C.Q.; Roth, M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 1982, 32, 164–168. [CrossRef] Biomolecules 2020, 10, 131 15 of 15
- Heneka, M.T.; Ramanathan, M.; Jacobs, A.H.; Dumitrescu-Ozimek, L.; Bilkei-Gorzo, A.;Debeir, T.; Sastre, M.; Galldiks, N.; Zimmer, A.; Hoehn, M.; et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J. Neurosci. 2006, 26, 1343–1354. [CrossRef]
- Heneka, M.T.;Nadrigny, F.; Regen, T.; Martinez-Hernandez, A.; Dumitrescu-Ozimek, L.; Terwel, D.; Jardanhazi-Kurutz, D.; Walter, J.; Kirchho_, F.; Hanisch, U.K.; et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc. Natl. Acad. Sci. USA 2010, 107, 6058–6063. [CrossRef]
- Vonck, K.;Raedt, R.; Naulaerts, J.; De Vogelaere, F.; Thiery, E.; Van Roost, D.; Aldenkamp, B.; Miatton, M.; Boon, P. Vagus nerve stimulation 25 years later! What do we know about the e_ects on cognition? Neurosci. Biobehav. Rev. 2014, 45, 63–71. [CrossRef] [PubMed]
References from: Isohumulones from hops (humulus lupulus) and their potential role in medical nutrition therapy
- [1] Woolf SH, Aron L, editors. U.S. health in international perspective: shorter lives, poorer health. Washington, D.C: NRC and IOM, National Academies Press; 2013
- [2] Strissel KJ, Denis GV, Nikolajczyk BS. Immune regulators of inflammation in obesity-associated type 2 diabetes and coronary artery disease. Curr Opin Endocrinol Diabetes Obes 2014;21(5):330–8, doi:http://dx.doi.org/10.1097/ MED.0000000000000085. 25106001.
- [3] Olden K, Lin YS, Gruber D, Sonawane B. Epigenome: biosensor of cumulative exposure to chemical and nonchemical stressors related to environmental justice. Am J Public Health 2014;104(10):1816–24, doi:http://dx.doi.org/ 10.2105/AJPH.2014.302130. 25122010.
- [4] Estruch R, Ros E, Salas-Salvad J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368(14):1279–90, doi:http://dx.doi.org/10.1056/NEJMoa1200303. 23432189.
- [5] De Lorgeril M. Mediterranean diet and cardiovascular disease: historical perspective and latest evidence. Curr Atheroscler Rep 2013;15(12):370, doi: http://dx.doi.org/10.1007/s11883-013-0370-4. 24105622.
- [6] Chiva-Blanch G, Badimon L, Estruch R. Latest evidence of the effects of the Mediterranean diet in prevention of cardiovascular disease. Curr Atheroscler Rep 2014;16(10):446, doi:http://dx.doi.org/10.1007/s11883-014-0446-9. 25115436.
- [7] Casas R, Sacanella E, Urpi-Sarda M, Chiva-Blanch G, Ros E, Martinez-Gonzalez MA, et al. The effects of the Mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS One 20149(6), doi:http://dx.doi.org/ 10.1371/journal.pone.0100084. 24925270 Fig. 5. Influence of isohumulones (Meta) on gastrointestinal mucosal occludin and zonulin mRNA in the high fat fed obese mouse model [51]. 50 J.S. Bland et al. / PharmaNutrition 3 (2015) 46–52
- [8] Ruiz-Canela M, Estruch R, Corella D, Salas-Salvadó J, Martínez-González MA. Association of Mediterranean diet with peripheral artery disease: the PREDIMED randomized trial. JAMA 2014;311(4):415–7, doi:http://dx.doi.org/ 10.1001/jama.2013.280618. 24449321.
- [9] Kaur B, Henry J. Micronutrient status in type 2 diabetes: a review. Adv Food Nutr Res 2014;71:55–100, doi:http://dx.doi.org/10.1016/B978-0-12-800270- 4.00002-X. 24484939.
- [10] Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased Km): relevance to genetic disease and polymorphisms. Am J Clin Nutr 2002;75 (4):616–58. 11916749.
- [11] González-Castejón M, Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res 2011;64(5):438–55, doi: http://dx.doi.org/10.1016/j.phrs.2011.07.004. 21798349.
- [12] Anuradha CV. Phytochemicals targeting genes relevant for type 2 diabetes. Can J Physiol Pharmacol 2013;91(6):397–411, doi:http://dx.doi.org/10.1139/cjpp2012-0350. 23745945.
- [13] Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, et al. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signaling 2012;17(2):327–9, doi: http://dx.doi.org/10.1089/ars.2012.4600. 22404530.
- [14] Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 2013;138(1):1–17, doi:http://dx.doi.org/10.1016/j.pharmthera.2012.11.002. 23159372.
- [15] Khuda-Bukhsh AR, Das S, Saha SK. Molecular approaches toward targeted cancer prevention with some food plants and their products: inflammatory and other signal pathways. Nutr Cancer 2014;66(2):194–205, doi:http://dx. doi.org/10.1080/01635581.2014.864420. 24377653.
- [16] Howitz KT, Sinclair DA. Xenohormesis: sensing the chemical cues of other species. Cell 2008;133(3):387–91, doi:http://dx.doi.org/10.1016/j. cell.2008.04.019. 18455976.
- [17] Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. Hops (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod 2009;72(6):1220–30, doi:http://dx.doi.org/ 10.1021/np800740m. 19476340.
- [18] Yajima H, Ikeshima E, Shiraki M, Kanaya T, Fujiwara D, Odai H, et al. Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J Biol Chem 2004;279(32):33456–62, doi:http://dx.doi.org/10.1074/jbc. M403456200. 15178687.
- [19] Miura Y, Hosono M, Oyamada C, Odai H, Oikawa S, Kondo K. Dietary isohumulones, the bitter components of beer, raise plasma HDL-cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARa activations in C57BL/6 mice. Br J Nutr 2005;93(4):559–67. 15946420.
- [20] Shimura M, Hasumi A, Minato T, Hosono M, Miura Y, Mizutani S, et al. Isohumulones modulate blood lipid status through the activation of PPAR alpha. Biochim Biophys Acta 2005;1736(1):51–60, doi:http://dx.doi.org/10.1016/j. bbalip.2005.06.008. 16099209.
- [21] Yajima H, Noguchi T, Ikeshima E, Shiraki M, Kanaya T, Tsuboyama-Kasaoka N, et al. Prevention of diet-induced obesity by dietary isomerized hop extract containing isohumulones, in rodents. Int J Obes (Lond) 2005;29(8):991–7, doi: http://dx.doi.org/10.1038/sj.ijo.0802965. 15852044.
- [22] Nozawa H, Nakao W, Zhao F, Kondo K. Dietary supplement of isohumulones inhibits the formation of aberrant crypt foci with a concomitant decrease in prostaglandin E2 level in rat colon. Mol Nutr Food Res 2005;49(8):772–8, doi: http://dx.doi.org/10.1002/mnfr.200500027. 15968705.
- [23] Tripp ML, Darland G, Lerman R, Lukaczer D, Bland J. Hop and modified hop extracts have potent in vitro anti-inflammatory properties. Acta Hort 2005;668:217–27.
- [24] Tripp ML, Konda VR, Darland G, Desai A, Chang J-I, Carroll BJ, et al. Rho-isoalpha acids and tetrahydro-iso-acids are selective protein kinase inhibitors which potently reduce inflammation in macrophages in vitro and in the collagen-induced rheumatoid arthritis model in vivo. Arch Hort 2009;848:221–34.
- [25] Babish JG, Pacioretty LM, Bland JS, Minich DM, Hu J, Tripp ML. Antidiabetic screening of commercial botanical products in 3T3-L1 adipocytes and db/db mice. J Med Food 2010;13(3):535–47, doi:http://dx.doi.org/10.1089/ jmf.2009.0110. 20521979.
- [26] Tripp ML, Darland G, Konda VR, Pacioretty LM, Chang J, Bland JS, et al. Optimized mixture of hops rho iso-alpha acids-rich extract and acacia proanthocyanidins-rich extract reduces insulin resistance in 3T3-L1 adipocytes and improves glucose and insulin control in db/db mice. Nutr Res Pract 2012;6 (5):405–13, doi:http://dx.doi.org/10.4162/nrp.2012.6.5.405.
- [27] Hougee S, Faber J, Sanders A, Berg WB, Garssen J, Smit HF, et al. Selective inhibition of COX-2 by a standardized CO2 extract of Humulus lupulus in vitro and its activity in a mouse model of zymosan-induced arthritis. Planta Med 2006;72(3):228–33, doi:http://dx.doi.org/10.1055/s-2005-916212. 16534727.
- [28] Minich DM, Bland JS. Dietary management of the metabolic syndrome beyond macronutrients. Nutr. Rev. 2008;66(8):429–44, doi:http://dx.doi.org/10.1111/ j.1753-4887.2008.00075.x. 18667004.
- [29] United States Federal Food and Drug Code of Federal Regulations, 21 CFR Ch.1 (04.01.03 ed.).
- [30] Lukaczer D, Darland G, Tripp M, LIska D, Lerman RH, Schiltz B, et al. A pilot trial evaluating Meta050, a proprietary combination of reduced iso-alpha acids, rosemary extract and oleanolic acid in patients with arthritis and fibromyalgia. Phytother Res 2005;19(10):864–9, doi:http://dx.doi.org/10.1002/ptr.1709. 16261517.
- [31] Minich DM, Bland JS, Katke J, Darland G, Hall A, Lerman RH, et al. Clinical safety and efficacy of NG440: a novel combination of rho iso-alpha acids from hops, rosemary, and oleanolic acid for inflammatory conditions. Can J Physiol Pharmacol 2007;85(9):872–83, doi:http://dx.doi.org/10.1139/Y07-055. 18066133.
- [32] Hall AJ, Babish JG, Darland GK, Carroll BJ, Konda VR, Lerman RH, et al. Safety, efficacy and anti-inflammatory activity of rho iso-alpha-acids from hops. Phytochemistry 2008;69(7):1534–47, doi:http://dx.doi.org/10.1016/j.phytochem.2008.02.001. 18358504.
- [33] Hall AJ, Tripp M, Howell T, Darland G, Bland JS, Babish JG. Gastric mucosal cell model for estimating relative gastrointestinal toxicity of nonsteroidal anti-inflammatory drugs. Prostaglandins Leukot Essent Fatty Acids 2006;75(1):9–17, doi:http://dx.doi.org/10.1016/j.plefa.2006.04.006. 16806870.
- [34] Konda VR, Desai A, Darland G, Bland JS, Tripp ML. Rho iso-alpha acids from hops inhibit the GSK-3/NF-kappaB pathway and reduce inflammatory markers associated with bone and cartilage degradation. J Inflamm (Lond) 2009;6:26–32, doi:http://dx.doi.org/10.1186/1476-9255-6-26. 19712471.
- [35] Konda VR, Desai A, Darland G, Bland JS, Tripp ML. Meta060 inhibits osteoclastogenesis and matrix metalloproteinases in vitro and reduces bone and cartilage degradation in a mouse model of rheumatoid arthritis. Arthritis Rheum 2010;62(6):1683–92, doi:http://dx.doi.org/10.1002/art.27441. 20201075.
- [36] Desai A, Darland G, Bland JS, Tripp ML, Konda VR. META060 attenuates TNFa-activated inflammation, endothelial-monocyte interactions, and matrix metalloproteinase-9 expression, and inhibits NF-kB and AP-1 in THP1 monocytes. Atherosclerosis 2012;223(1):130–6, doi:http://dx.doi.org/ 10.1016/j.atherosclerosis.2012.05.004. 22658256.
- [37] Cattoor K, Bracke M, Deforce D, De Keukeleire D, Heyerick A. Transport of hop bitter acids across intestinal Caco-2 cell monolayers. J Agric Food Chem 2010;58(7):4132–40, doi:http://dx.doi.org/10.1021/jf904079h. 20329731.
- [38] Cattoor K, Remon JP, Boussery K, Van Bocxlaer J, Bracke M, De Keukeleire D, et al. Bioavailability of hop-derived iso-alpha-acids and reduced derivatives. Food Funct 2011;2(7):412–22, doi:http://dx.doi.org/10.1039/c1fo10009b. 21894329.
- [39] Cattoor K, Dresel M, De Bock L, Boussery K, Van Bocxlaer J, Remon JP, et al. Metabolism of hop-derived bitter acids. J Agric Food Chem 2013;61(33):7916– 24, doi:http://dx.doi.org/10.1021/jf300018s. 23898921.
- [40] Namikoshi T, Tomita N, Fujimoto S, Haruna Y, Ohzeki M, Komai N, et al. Isohumulones derived from hops ameliorate renal injury via an anti-oxidative effect in dahl salt-sensitive rats. Hypertens Res 2007;30(2):175–84, doi:http:// dx.doi.org/10.1291/hypres.30.175.
- [41] Park MH, Kim DH, Lee EK, Kim ND, Im DS, Lee J, et al. Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res 2014;37(12):1507–14, doi:http://dx.doi.org/10.1007/s12272-014- 0474-6. 25239110.
- [42] Minich DM, Lerman RH, Darland G, Babish JG, Pacioretty LM, Bland JS, et al. Hops and acacia phytochemicals decreased lipotoxicity in 3T3-L1 adipocytes, db/db mice, and individuals with metabolic syndrome. J Nutr Metab 2010, doi: http://dx.doi.org/10.1155/2010/467316. 20721358
- [43] Tripp ML, Darland G, Konda VR, Pacioretty LM, Chang JL, Bland JS, et al. Optimized mixture of hops rho iso-alpha acids-rich extract and Acacia proanthocyanidins-rich extract reduces insulin resistance in 3T3-L1 adipocytes and improves glucose and insulin control in db/db mice. Nutr Res Pract 2012;6 (5):405–13, doi:http://dx.doi.org/10.4162/nrp.2012.6.5.405. 23198019.
- [44] Obara K, Mizutani M, Hitomi Y, Yajima H, Kondo K. Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin Nutr 2009;28(3):278–84, doi:http://dx.doi. org/10.1016/j.clnu.2009.03.012. 19395131.
- [45] Lerman RH, Minich DM, Darland G, Lamb JJ, Schiltz B, Babish JG, et al. Enhancement of a modified Mediterranean-style, low glycemic load diet with specific phytochemicals improves cardiometabolic risk factors in subjects with metabolic syndrome and hypercholesterolemia in a randomized trial. Nutr Metab 2008;5(1):29–37, doi:http://dx.doi.org/10.1186/1743-7075- 5-29.
- [46] Jones JL, Fernandez ML, McIntosh MS, Najm W, Calle MC, Kalynych C, et al. A Mediterranean-style low-glycemic-load diet improves variables of metabolic syndrome in women, and addition of a phytochemical-rich medical food enhances benefits on lipoprotein metabolism. J Clin Lipidol 2011;5(3):188–96, doi:http://dx.doi.org/10.1016/j.jacl.2011.03.002. 21600524.
- [47] Lerman RH, Minich DM, Darland G, Lamb JJ, Chang JL, Hsi A, et al. Subjects with elevated LDL cholesterol and metabolic syndrome benefit from supplementation with soy protein, phytosterols, hops rho iso-alpha acids, and Acacia nilotica proanthocyanidins. J Clin Lipidol 2010;4(1):59–68, doi:http://dx.doi. org/10.1016/j.jacl.2009.11.002. 21122628.
- [48] Sumiyoshi M, Kimura Y. Hop (Humulus lupulus L.) extract inhibits obesity in mice fed a high-fat diet over the long term. Br J Nutr 2013;109(01):162–72, doi: http://dx.doi.org/10.1017/S000711451200061X.
- [49] Konda VR, Desai A, Darland G, Grayson N, Bland JS. KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes. PLoS One 2014;9(1):e87848, doi:http://dx.doi.org/10.1371/journal. pone.0087848. 24498211.
- [50] Vroegrijk IO, van Diepen JA, van den Berg SA, Romijn JA, Havekes LM, van Dijk KW, et al. META060 protects against diet-induced obesity and insulin resisJ.S. Bland et al. / PharmaNutrition 3 (2015) 46–52
- 51 tance in a high-fat-diet fed mouse. Nutrition 2013;29(1):276–83, doi:http:// dx.doi.org/10.1016/j.nut.2012.05.004. 22985971. [51] Everard A, Geurts L, Van Roye M, Delzenne NM, Cani PD. Tetrahydro iso-alpha acids from hops improve glucose homeostasis and reduce body weight gain and metabolic endotoxemia in high-fat diet-fed mice. PLoS One 2012;7(3):e33858, doi:http://dx.doi.org/10.1371/journal.pone.0033858. 22470484.
- [52] Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol 2014;20 (43):16079–94, doi:http://dx.doi.org/10.3748/wjg.v20.i43.16079. 25473159.
- [53] Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014;5:190–5, doi:http://dx.doi.org/10.3389/fmicb.2014.00190. 24808896.
- [54] Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014;63(9):1513–21, doi:http://dx.doi.org/10.1136/gutjnl-2014-306928. 24833634.
- [55] Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev 2014;31:342–8.
- [56] Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol 2013;4:71–6, doi:http://dx.doi.org/10.3389/ fendo.2013.00071. 23781214.
- [57] Xiao S, Zhao L. Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS Microbiol Ecol 2014;87 (2):303–14, doi:http://dx.doi.org/10.1111/1574-6941.12250. 24219358.
- [58] Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 2006;55(5):1443–9, doi: http://dx.doi.org/10.2337/db05-1593. 16644703.
- [59] Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, Karatza E, Triantos C, Vagianos CE, et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest 2012;42(4):439–46, doi:http://dx.doi.org/10.1111/j.1365- 2362.2011.02609.x. 22023490.
- [60] Park MH, Kim DH, Lee EK, Kim ND, Im DS, Lee J, et al. Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch. Pharm Res 2014;37(12):1507–14, doi:http://dx.doi.org/10.1007/s12272-014- 0474-6. 25239110.
- [61] Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol 2013;4:71–8, doi:http://dx.doi.org/10.3389/ fendo.2013.00071. 23781214.
- [62] Kral JG. Diabesity: palliating, curing or preventing the dysmetabolic diathesis. Maturitas 2014;77(3):243–8, doi:http://dx.doi.org/10.1016/j.maturitas.2013.12.004. 24439056. [63] Barabási A-L. Network medicine–from obesity to the “diseasome”. N Engl J Med 2007;357(4):404–7,